131 research outputs found

    Lost in transition: a systematic review of neonatal electroencephalography in the delivery room - Are we forgetting an important biomarker for newborn brain health?

    Get PDF
    Background: Electroencephalography (EEG) monitoring is routine in neonatal intensive care units (NICUs) for detection of seizures, neurological monitoring of infants following perinatal asphyxia, and increasingly, following preterm delivery. EEG monitoring is not routinely commenced in the delivery room (DR). Objectives: To determine the feasibility of recording neonatal EEG in the DR, and to assess its usefulness as a marker of neurological well-being during immediate newborn transition. Methods: We performed a systematic stepwise search of PubMed using the following terms: infant, newborns, neonate, DR, afterbirth, transition, and EEG. Only human studies describing EEG monitoring in the first 15 min following delivery were included. Infants of all gestational ages were included. Results: Two original studies were identified that described EEG monitoring of newborn infants within the DR. Both prospective observational studies used amplitude-integrated EEG (aEEG) monitoring and found it feasible in infants >34 weeks' gestation; however, technical challenges made it difficult to obtain continuous reliable data. Different EEG patterns were identified in uncompromised newborns and those requiring resuscitation. Conclusion: EEG monitoring is possible in the DR and may provide an objective baseline measure of neurological function. Further feasibility studies are required to overcome technical challenges in the DR, but these challenges are not insurmountable with modern technology

    A review of important electroencephalogram features for the assessment of brain maturation in premature infants

    Get PDF
    This review describes the maturational features of the baseline electroencephalogram (EEG) in the neurologically healthy preterm infant. Features such as continuity, sleep state, synchrony and transient waveforms are described, even from extremely preterm infants and includes abundant illustrated examples. The physiological significance of these EEG features and their relationship to neurodevelopment are highlighted where known. This review also demonstrates the importance of multichannel conventional EEG monitoring for preterm infants as many of the features described are not apparent if limited channel EEG monitors are used. Conclusion: This review aims to provide healthcare professionals in the neonatal intensive care unit with guidance on the more common normal maturational features seen in the EEG of preterm infants

    A deep convolutional neural network for brain tissue segmentation in Neonatal MRI

    Get PDF
    Brain tissue segmentation is a prerequisite for many subsequent automatic quantitative analysis techniques. As with many medical imaging tasks, a shortage of manually annotated training data is a limiting factor which is not easily overcome, particularly using recent deep-learning technology. We present a deep convolutional neural network (CNN) trained on just 2 publicly available manually annotated volumes, trained to annotate 8 tissue types in neonatal T2 MRI. The network makes use of several recent deep-learning techniques as well as artificial augmentation of the training data, to achieve state-of-the- art results on public challenge data

    Lost in Transition: A Systematic Review of Neonatal Electroencephalography in the Delivery Room—Are We Forgetting an Important Biomarker for Newborn Brain Health?

    Get PDF
    BackgroundElectroencephalography (EEG) monitoring is routine in neonatal intensive care units (NICUs) for detection of seizures, neurological monitoring of infants following perinatal asphyxia, and increasingly, following preterm delivery. EEG monitoring is not routinely commenced in the delivery room (DR).ObjectivesTo determine the feasibility of recording neonatal EEG in the DR, and to assess its usefulness as a marker of neurological well-being during immediate newborn transition.MethodsWe performed a systematic stepwise search of PubMed using the following terms: infant, newborns, neonate, DR, afterbirth, transition, and EEG. Only human studies describing EEG monitoring in the first 15 min following delivery were included. Infants of all gestational ages were included.ResultsTwo original studies were identified that described EEG monitoring of newborn infants within the DR. Both prospective observational studies used amplitude-integrated EEG (aEEG) monitoring and found it feasible in infants >34 weeks’ gestation; however, technical challenges made it difficult to obtain continuous reliable data. Different EEG patterns were identified in uncompromised newborns and those requiring resuscitation.ConclusionEEG monitoring is possible in the DR and may provide an objective baseline measure of neurological function. Further feasibility studies are required to overcome technical challenges in the DR, but these challenges are not insurmountable with modern technology

    Quantitative Preterm EEG Analysis: The Need for Caution in Using Modern Data Science Techniques

    Get PDF
    Hemodynamic changes during neonatal transition increase the vulnerability of the preterm brain to injury. Real-time monitoring of brain function during this period would help identify the immediate impact of these changes on the brain. Neonatal EEG provides detailed real-time information about newborn brain function but can be difficult to interpret for non-experts; preterm neonatal EEG poses even greater challenges. An objective quantitative measure of preterm brain health would be invaluable during neonatal transition to help guide supportive care and ultimately protect the brain. Appropriate quantitative measures of preterm EEG must be calculated and care needs to be taken when applying the many techniques available for this task in the era of modern data science. This review provides valuable information about the factors that influence quantitative EEG analysis and describes the common pitfalls. Careful feature selection is required and attention must be paid to behavioral state given the variations encountered in newborn EEG during different states. Finally, the detrimental influence of artifacts on quantitative EEG analysis is illustrated

    Enhanced monitoring of the preterm infant during stabilization in the delivery room

    Get PDF
    Monitoring of preterm infants in the delivery room (DR) remains limited. Current guidelines suggest that pulse oximetry should be available for all preterm infant deliveries, and that if intubated a colorimetric carbon dioxide detector should provide verification of correct endotracheal tube placement. These two methods of assessment represent the extent of objective monitoring of the newborn commonly performed in the DR. Monitoring non-invasive ventilation effectiveness (either by capnography or respiratory function monitoring) and cerebral oxygenation (near-infrared spectroscopy) is becoming more common within research settings. In this article, we will review the different modalities available for cardiorespiratory and neuromonitoring in the DR and assess the current evidence base on their feasibility, strengths, and limitations during preterm stabilization

    Response: Commentary: Enhanced monitoring of the preterm infant during stabilization in the delivery room

    Get PDF
    A commentary on: Enhanced Monitoring of the Preterm Infant during Stabilization in the Delivery Room by Hutchon DJ. Front Pediatr (2016) 4:64. doi: 10.3389/fped.2016.0006
    • 

    corecore